Index of values


C
calc_accuracy [Libsvm.Stats]
calc_accuracy expected predicted
calc_mse [Libsvm.Stats]
calc_mse expected predicted
calc_n_correct [Libsvm.Stats]
calc_n_correct expected predicted
calc_scc [Libsvm.Stats]
calc_scc expected predicted
create [Libsvm.Svm.Problem]
create x y constructs a problem from a feature matrix x and target vector y.
create_k [Libsvm.Svm.Problem]
create_k k y constructs a problem from a matrix k and target vector y.
cross_validation [Libsvm.Svm]
cross_validation params problem n_folds conducts n-fold cross-validation on the given problem and parameters params.

G
get_labels [Libsvm.Svm.Model]
get_labels model
get_n_classes [Libsvm.Svm.Model]
get_n_classes model
get_n_feats [Libsvm.Svm.Problem]
get_n_feats prob
get_n_samples [Libsvm.Svm.Problem]
get_n_samples prob
get_n_sv [Libsvm.Svm.Model]
get_n_sv model
get_svm_type [Libsvm.Svm.Model]
get_svm_type model
get_svr_probability [Libsvm.Svm.Model]
get_svr_probability model
get_targets [Libsvm.Svm.Problem]
get_targets prob

L
load [Libsvm.Svm.Model]
load filename loads a model from the file filename.
load [Libsvm.Svm.Problem]
load filename loads a problem from the file filename.

M
min_max_feats [Libsvm.Svm.Problem]
min_max_feats prob

O
output [Libsvm.Svm.Problem]
output prob oc outputs the problem prob to an output channel oc.

P
predict [Libsvm.Svm]
predict model x applies predict_one to each row of the matrix x.
predict_from_file [Libsvm.Svm]
predict_from_file model filename does classification or regression on the testing data given in filename.
predict_one [Libsvm.Svm]
predict_one model x does classification or regression on a test vector x given a model.
predict_probability [Libsvm.Svm]
predict_probability m x does classification or regression on a test vector x based on a model with probability information.
predict_values [Libsvm.Svm]
predict_values model x
print [Libsvm.Svm.Problem]
print prob prints the internal representation of a problem.

S
save [Libsvm.Svm.Model]
save model filename saves a model to the file filename.
save [Libsvm.Svm.Problem]
save prob filename saves the problem prob to the file filename.
scale [Libsvm.Svm.Problem]
scale ?lower ?upper prob min_feats max_feats

T
train [Libsvm.Svm]
train params problem trains a SVM model on the given problem and parameters params: svm_type - type of SVM classification/regression (default C_SVC), kernel - type of the SVM kernel (default RBF), degree - the exponent in the POLY kernel (default 3), gamma - parameter for POLY, RBF and SIGMOID kernel (default 0), coef0 - parameter for POLY and SIGMOID kernel (default 0), c - the cost of constraints violation in C_SVC, EPSILON_SVR, and NU_SVR (default 1), nu - the parameter in NU_SVM, NU_SVR and ONE_CLASS (default 0.5), eps - the epsilon in the epsilon-sensitive loss function of EPSILON_SVR (default 0.1), cachesize - the size of the kernel cache in megabytes (default 100), tol - the stopping criterion (default 1e-3), shrinking - use on to conduct shrinking, otherwise off (default on), probability - if probability = true, then a model with probability information will be obtained (default false), weights - weights to penalize classes (default = []), verbose - if verbose = true, then train the SVM in verbose mode (default false)