C | |
calc_accuracy [Libsvm.Stats] | calc_accuracy expected predicted
|
calc_mse [Libsvm.Stats] | calc_mse expected predicted
|
calc_n_correct [Libsvm.Stats] | calc_n_correct expected predicted
|
calc_scc [Libsvm.Stats] | calc_scc expected predicted
|
create [Libsvm.Svm.Problem] | create x y constructs a problem from a feature matrix x and target
vector y .
|
create_k [Libsvm.Svm.Problem] | create_k k y constructs a problem from a matrix k and target vector
y .
|
cross_validation [Libsvm.Svm] | cross_validation params problem n_folds conducts n-fold
cross-validation on the given problem and parameters params .
|
G | |
get_labels [Libsvm.Svm.Model] | get_labels model
|
get_n_classes [Libsvm.Svm.Model] | get_n_classes model
|
get_n_feats [Libsvm.Svm.Problem] | get_n_feats prob
|
get_n_samples [Libsvm.Svm.Problem] | get_n_samples prob
|
get_n_sv [Libsvm.Svm.Model] | get_n_sv model
|
get_svm_type [Libsvm.Svm.Model] | get_svm_type model
|
get_svr_probability [Libsvm.Svm.Model] | get_svr_probability model
|
get_targets [Libsvm.Svm.Problem] | get_targets prob
|
L | |
load [Libsvm.Svm.Model] | load filename loads a model from the file filename .
|
load [Libsvm.Svm.Problem] | load filename loads a problem from the file filename .
|
M | |
min_max_feats [Libsvm.Svm.Problem] | min_max_feats prob
|
O | |
output [Libsvm.Svm.Problem] | output prob oc outputs the problem prob to an output channel oc .
|
P | |
predict [Libsvm.Svm] | predict model x applies predict_one to each row of the matrix x .
|
predict_from_file [Libsvm.Svm] | predict_from_file model filename does classification or regression
on the testing data given in filename .
|
predict_one [Libsvm.Svm] | predict_one model x does classification or regression on a test vector
x given a model .
|
predict_probability [Libsvm.Svm] | predict_probability m x does classification or regression on a test
vector x based on a model with probability information.
|
predict_values [Libsvm.Svm] | predict_values model x
|
print [Libsvm.Svm.Problem] | print prob prints the internal representation of a problem.
|
S | |
save [Libsvm.Svm.Model] | save model filename saves a model to the file filename .
|
save [Libsvm.Svm.Problem] | save prob filename saves the problem prob to the file filename .
|
scale [Libsvm.Svm.Problem] | scale ?lower ?upper prob min_feats max_feats
|
T | |
train [Libsvm.Svm] | train params problem trains a SVM model on the given problem and
parameters params : svm_type - type of SVM classification/regression (default C_SVC ), kernel - type of the SVM kernel (default RBF ), degree - the exponent in the POLY kernel (default 3), gamma - parameter for POLY , RBF and SIGMOID kernel (default 0), coef0 - parameter for POLY and SIGMOID kernel (default 0), c - the cost of constraints violation in C_SVC , EPSILON_SVR , and
NU_SVR (default 1), nu - the parameter in NU_SVM , NU_SVR and ONE_CLASS (default 0.5), eps - the epsilon in the epsilon-sensitive loss function of
EPSILON_SVR (default 0.1), cachesize - the size of the kernel cache in megabytes (default 100), tol - the stopping criterion (default 1e-3), shrinking - use on to conduct shrinking, otherwise off (default on ), probability - if probability = true, then a model with probability
information will be obtained (default false), weights - weights to penalize classes (default = []), verbose - if verbose = true, then train the SVM in verbose mode
(default false)
|